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Abstract. Deep Learning models have recently achieved incredible per-
formances in the Computer Vision field and are being deployed in an
ever-growing range of real-life scenarios. Since they do not intrinsically
provide insights of their inner decision processes, the field of eXplainable
Artificial Intelligence emerged. Different XAI techniques have already
been proposed, but the existing literature lacks methods to quantitatively
compare different explanations, and in particular the semantic compo-
nent is systematically overlooked. In this paper we introduce quantitative
and ontology-based techniques and metrics in order to enrich and com-
pare different explanations and XAI algorithms.
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1 Introduction

In the past few years, Artificial Intelligence (AI) has been a subject of intense
media hype - coming up in countless articles, often outside of technology-minded
publications. This renewed interest is rooted in the new paradigm of Deep Learn-
ing (DL), and specifically in the ground-breaking results that convolutional neu-
ral networks unlocked in vision-based real-world tasks, spanning from enabling
self-driving car technology [14] to achieving super-human accuracy in image-
based medical diagnosis [6].

Alas, there is a clear trade-off between accuracy and interpretability, and DL
models fall on the far left side of the spectrum: especially for computer vision
(CV) tasks, the best performing models are so-called black boxes: they do not
provide a human-understandable representation of their encoded knowledge.

Given the pervasive nature of the recent advancements in AI, and the ever-
growing application in real-world domains, the debate around ethical issues in
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AI technologies and algorithms is more lively than ever: scientists and engineers
should be able to ensure that intelligent systems are actually capable of acting
in the interest of people’s well-being [2].

However, there is no consensus on how to explain a black-box classifier, and
not even on what an explanation is in the first place [9]; consequently, there
are no quantitative approaches for comparing different eXplainable Artificial
Intelligence (XAI) approaches for CV tasks.

Furthermore, image classification is typically framed as a one-vs-all task,
whereas we humans rely on structured symbolic knowledge: e.g., given the picture
of a Siamese cat, we know that labelling it as another cat breed is not as wrong
as labelling it as a vehicle for example. We argue that this factor has to be taken
into account when inspecting the classification behaviour of a black-box model.

In this paper, we propose a tool set for quantitatively comparing explanations
from black-box image classifiers, factoring in numeric values as well as semantic
features of the image-label-explanation tuple.

This paper is structured as follows: in Sect. 2 we provide an overview of
Neural Networks and DL models for CV tasks; while in Sect. 3 we describe the
black-box problems, what could constitute an explanation, and what are the
state-of-the-art XAI algorithms. In Sect. 4 we introduce heatmap-based metrics
and provide a visual and quantitative comparison of XAI algorithms. In Sect. 5
we link explanations to an ontology and we introduce a semantics-based metric
for explanations. We discuss critical steps in Sect. 6 and we conclude outlining
directions for future work in Sect. 7.

2 Deep Learning for Computer Vision

Neural networks are densely connected sets of computational units called arti-
ficial neurons [10]. In recent years, more complex models (globally referred to
as DL [7]) emerged and started obtaining important results; besides algorith-
mic advancements, key enabling factors for the rise of DL were the explosive
growth and availability of data and the remarkable advancement in hardware
technologies [3]. More importantly, Deep Learning became the de facto standard
approach for several Computer Vision tasks, such as image classification.

The benchmark for image classification is the ILSVRC challenge, based on
the ImageNet dataset (millions of images for one thousand of labels) [4]. The
groundbreaking model for Computer Vision was AlexNet, a deep convolutional
NN that won the ILSVRC competition in 2013. Increasingly complex models
were introduced in later years (most notably the Inception architecture, which
we use in this paper) but all deep neural networks for computer vision share the
same generic structure with interleaved convolutional and pooling layers followed
by fully connected ones.
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Since in this paper we focus on explaining already-trained classifiers, we will
exploit a pre-trained InceptionV3 [19] model, available within the Keras1 and
Pytorch2 libraries.

3 Towards eXplainable Artificial Intelligence

3.1 The Black Box Problem

One of the several advantages of deep NNs is their ability to automate the feature
extraction process within a completely data-driven framework: for instance, in
order to build an image classifier able to distinguish between a stop signal and a
tree, it is not necessary to give a formal (machine-runnable) definition of tree - it
is sufficient to provide a large number of labelled example images. The DL model,
during training, builds its own representation of the entities and performs its own
feature engineering. The downside of this approach is that the detected features
are sub-symbolic (numerical), numerous, and without any attached semantics. It
is therefore totally possible to observe the input and the output data of a black
box model, and consequently to evaluate its performance, without having any
understanding about its internal operations.

The difficulty of inspecting the internal state of a DL model, and there-
fore understanding why it produced a given output, is commonly referred to as
the Black Box Problem. This problem becomes crucial when such models are
deployed in real-world sensitive scenarios, ranging from default risk prediction
to medical diagnosis: there are several reasons why an unexplained black box
model can be troublesome.

From a legal viewpoint, AI systems are regulated by law with the Gen-
eral Data Protection Regulation (GDPR) [8] - which includes many regulations
regarding algorithmic decision-making. For instance, GDPR states that the deci-
sions which produces legal effects concerning him or her or of similar importance
shall not be based on the data revealing sensitive information (for example about
ethnic origins, political opinions, sexual orientation). Clearly this is impossible
to guarantee without opening the black box. Moreover, the GDPR states that
the controller [8] must ensure the right for individuals to obtain further infor-
mation about the decision of any automated system, which is precisely the goal
of XAI.

Second, an unexplained DL model might be right for the wrong reasons (e.g.
might have picked up a watermark in the images of one class, or recognize an
object thanks to the recurrent background in the training set) within the initially
provided data and fail spectacularly when presented with new batches of data
from different sources (e.g. medical data acquired with a different commercial
device). In one almost anecdotal experiment [15], a NN was trained to classify
pictures of huskies versus wolves - the resulting classifier was accurate, but XAI
techniques showed that the NN was focusing on the snow in the wolf images,

1 github.com/keras-team/keras.
2 pytorch.org.

http://github.com/keras-team/keras
https://pytorch.org/
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since all the photos of wolves had snow in them, but the husky photos did
not. Furthermore, explanations would help gain the trust of domain experts
regarding the adoption of new decision support systems, such as medical staff
using intelligent ultrasound machines.

3.2 Explanations

To explain (or to interpret) means to provide some meaning in understandable
terms. This definition also holds in XAI, where interpreting a model means giving
an explanation to the decisions of a certain model, that has to be at the same
time an accurate proxy of its decision making process (a property called fidelity)
and understandable to humans.

One of the most important distinctions among explainability methods is their
local or global interpretability [9]. A global explanation allows to describe the
general decision process implemented by the model; on the other hand, local
explanations lead to the comprehension of a specific decision on a single data
point. Another important feature of explanation methods is how they relate to
the model they are trying to explain. In particular, one can have a model agnostic
explanator, which is the outcome of an algorithm not tied to the architectural
details of the specific model being explained. Conversely, model aware explana-
tion techniques rely on inspecting inner characteristics of the black box model
of interest, such as gradients in a NN: clearly, these approaches are less general
as they can be applied only on specific classifiers.

Similarly, an explanation technique can be data agnostic, i.e. it can explain
any kind of input data (images, texts or tabular), or data aware. In CV (and
therefore this paper) the input data are always images, and typically explana-
tions are heatmaps, highlighting the most important regions of the data instance
for the prediction. This allows the user to visually understand which pixels cor-
relate with the predicted label, and decide whether the DL model focused on a
reasonable region of the input image.

3.3 XAI Algorithms

In this paper we compare six state-of-the-art XAI algorithms for image classifi-
cation: they all provide local explanations as heatmaps.

– The first algorithm is LIME [15], which is a data and model agnostic expla-
nation method. Its application to images involves their initial partition in
superpixels, then each one is silenced to test its importance for the output,
using a local linear model.

– The idea of RISE [13] is similar, since it still perturbs the input by means of
random binary masks (without the need of the segmentation into superpixels)
to study the impact on the output. Note that RISE can be applied only to
images, but it is still model agnostic.

– Then some saliency masks have been built exploiting the CNN’s properties:
this is the case of Vanilla Gradient [5], which consists in looking for existing
input patterns of bounded norm maximizing the activation of a chosen layer.
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– Another model aware technique is Guided Backpropagation [18], which uses a
deconvolutional neural network to invert the propagation from the output to
the input layer in order to reconstruct numerically the image which maximize
the activation of interest.

– Grad-CAM [17] uses the gradients flowing into the final convolutional layer
to produce a coarse localization map highlighting the important regions in
the input image for a target class of interest.

– Finally, Layerwise Relevant Propagation (LRP) [1] allows to find for each
pixel a relevance score using a local distribution rule.

4 Heatmap-Based Comparison

4.1 Visual Comparison

As introduced in the previous section, the typical explanation for black box
classification algorithms is a heatmap overlayed on the input image, so that
each pixel’s hotness represents its relevance in the classification - according to
the XAI algorithm of interest. As black box classifier we used an Inception-
V3 [19] pretrained with ImageNet and obtained the explanation heatmaps for
the six XAI algorithms introduced in Sect. 3.

For a first qualitative comparison, we consider one example image (label: lady-
bug and show the explanation heatmaps (for each XAI algorithm) relative to the
two top scoring classes (the correct label ladybug and a reasonable second leaf bee-
tle) and the two classes with lowest predicted probability (trolley and crab).

All heatmaps are displayed in Fig. 1: the red color is associated to the highest
values (the most important regions in the image), the blue color for the less
important areas. The saliency masks are normalized for the sake of visualization
(red for the 99◦ percentile, primary blue for the 1st percentile of the values of the
mask). Two maps which are visually equivalent may not be the same numerically.

However, the explanations for the correct label (ladybug) are much more
concentrated on the correct item, while considering the heatmaps created for
wrong classes one can see that they focus on background and surroundings of
the item. Moreover, there is a clear difference between the explanation methods:
Vanilla Gradient and LRP give a quite sparse heatmap, which is concentrated on
the ladybug (for all the labels considered), but also expanding in the surround-
ings. Guided Backpropagation saliency map is slightly more concentrated than
the previous ones but still without any tangible visual difference between the
explanations for different labels. LIME and Grad-CAM differentiate in a sharp
way the explanations for different classes: the correct label is explained quite
precisely (in LIME the most important superpixel is exactly overlayed to the
ladybug, while GradCAM is a little less precise). The explanation for RISE is
really sparse, and it does not seem to differentiate visually between the different
classes, meaning that the important regions are always the same ones, no matter
the label to be explained.
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Fig. 1. Visual comparison of explanation heatmaps for different XAI algorithms (Color
figure online)

4.2 Metrics

The analysis of a heatmap is twofold. First, one can evaluate how coherent the
heatmap is w.r.t. the location of the actual content within an image - that is,
whether the explanation focuses onto the same region where a human would.
This kind of approach allows to spot right-for-the-wrong-reasons scenarios, such
as the aforementioned wolf-snow case [15]. Second, one can measure how well
the explanation was able to highlight the pixels that contributed most to the
correct classification - regardless of their position in the image and coherence
with human focus. The first pair of metrics we introduce, AF (Area Focus) and
BF (Border Focus), measure the match between the hot region in an explanation
heatmap and an object segmentation provided as ground truth.

The first (absolute) metric is defined as

AF =
1

prop

∑
i m

+
i − ∑

i m
−
i∑

i |mi|
where mi are all pixels in the heatmap, and m+

i and m−
i denote respectively the

pixels inside and outside the segmentation contour. 1
prop is a normalization factor

(with prop being the ratio between the number of pixels in the segmentation
area and the total pixel count) introduced to balance the fact that the area
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inside the segmentation might vary from image to image. AF ’s minimum value
(corresponding to the worst case scenario, where the explanation is actually
the reversed segmentation) is equal to AFmin = − 1

prop

∑
i |mi|∑
i |mi| = − 1

prop and
its maximum (in the best case scenario, where segmentation and explanation
coincide) is AFmax = 1

prop

∑
i |mi|∑
i |mi| = 1

prop .
Thus, it is possible to normalize AF as follows:

ÃF =
AF − AFmin

AFmax − AFmin
=

AF + 1
prop

2
prop

=
1
2

(∑
i m

+
i − ∑

i m
−
i∑

i |mi| + 1
)

obtaining ÃF , a focus match metric with range [0, 1].
Besides measuring whether the explanation focuses on the inside region of the

segmentation, another option is to analyze how well the explanation is able to
focus on the general outline of the segmentation. We formalize this with another
metric, BF (Border Focus):

BF =
1

prop

∑
i

m+
i

1+di
− ∑

i
m−

i

1+di
∑

i
|mi|
di+1

where di is the minimum number of pixels separating the ith pixel from the
border of the segmentation: this allows to weight more the pixel near the border
of the object, such that the explanations highlighting the contour of the image
are considered better than the ones farther away from it. BF can be normalized

using BFmin = − 1
prop

∑
i

|mi|
1+di

∑
i

|mi|
1+di

= − 1
prop and BFmax = 1

prop

∑
i

|mi|
1+di

∑
i

|mi|
1+di

= 1
prop , so

that B̃F = BF+1
2 is independent of the size of the segmentation area as well.

On the one hand, we argue that it is important to check whether the expla-
nation of the model focuses on the image regions that a human would deem
relevant to the classification task. On the other hand, this approach requires
the dataset to provide ground truth segmentations defining the exact outline of
the objects in picture. Typically this is not an available information for image
classification benchmarks - for instance, ImageNet (the world standard dataset
for computer vision) does not provide any precise segmentation for its instances.

In order to evaluate the correlation between hotness in the explanation and
actual contribution to the correct classification, we include two more metrics [13],
namely insertion and deletion.

The deletion metric progressively removes pixels from the image (accord-
ing to the ranking provided by the explanation heatmap) and measures the
decrease in the prediction probability of correct label. For a good explanation,
one should observe a sharp drop and thus a low area under the probability curve
(AUC) obtained plotting the proportion of deleted pixels versus the probability
of belonging to the class of interest for the data instance.

The insertion metric, on the other hand, takes a complementary approach,
measuring the increase in the probability as more and more pixels are introduced
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to an empty background according the ranking provided by the heatmap scores,
with higher AUC indicative of a better explanation.

These metrics belong to the interval [0, 1], do not require a ground truth
segmentation, but need to query the black box classifier several times and to
access the classification score.

4.3 Quantitative Comparison

In Fig. 2 we consider again the ladybug example image and compute the four
described metrics (ÃF , B̃F , insertion, deletion) for the four labels (top two,
bottom two) for the heatmaps provided by six XAI algorithms (Vanilla, Guided
Backprop, LRP, GradCAM, LIME, RISE).

Fig. 2. Assessment of explainability methods

An important observation rising from the discussed metrics is that there is a
clear discrepancy between the regions of the image perceived as important from
the human eye and the parts which actually give a contribution to the outcome
of the model: in particular, according to the deletion and the insertion metrics
(which can be considered a proxy of the capability of the explanations to capture
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important regions purely from the model’s perspective), the best performing
techniques are model aware (in particular LRP, Guided Backpropagation and
Vanilla Gradient).

On the other hand, considering the two metrics involving the segmentation
as measures of the accordance between human and model perception of the data
instance, all the explanations (except for LIME and GradCAM) seem mediocre,
since they are not able to precisely isolate the main object in the image.

Hence, it is possible to conclude that LIME and GradCAM return an expla-
nation which is much closer to the human perception of the input, while they
fail to spot important pixels purely for the outcome as well as the model aware
techniques, which are better at explaining the system’s interpretation of the
image.

This observation somehow agrees with the visual heatmaps in Fig. 1, which
precisely highlight the portion of the image corresponding to the ladybug.

5 Linking Explanations with Structured Knowledge

Items in real life belong to taxonomies - e.g. Siamese cats are cats, then mammals,
then animals. We humans rely heavily on our hierarchical world knowledge when
learning and reasoning. Images used for CV tasks visually retain this kind of
structured similarity: for instance, all cats species are visually similar to each
other, and so on. However, image classification is framed as a one-vs-all task,
and this taxonomy is completely flattened on the output side of the learning
process, where each class is encoded as a one-hot vector. We argue that this
approach is not ideal for labelling items when pairwise ontological distances are
heterogeneous.

In this section, the XAI methods are compared exploiting the semantic rela-
tionships between the ImageNet labels. This is possible since all ImageNet labels
are nodes (called synsets) in the WordNet ontology [12]. WordNet is a large lex-
ical database of English language, where nouns, verbs, adjectives and adverbs
are grouped into synsets (collection of synonyms), each one expressing a dis-
tinct concept. Synsets are interlinked by means of various kinds of relations (in
particular, we have considered the is-a relationship), creating a network.

Exploiting the hierarchical structure of WordNet it is possible to compute the
semantic distance between different classes in ImageNet, using the wup similarity
[20], which measures the relatedness of two synsets by considering their depths
in the WordNet taxonomies, along with the depth of the LCS (Least Common
Subsumer).

The setup of this experiment is the following: given one image and an expla-
nation, we progressively mask pixels according to the ranking provided by the
explanation heatmap (with the deletion approach) and use the black box to clas-
sify the masked images. We then compute the wup similarity between the correct
label and the one that was obtained by feeding the partially masked image to
the black box classifier. We therefore obtain, for each image-explanation pair, a
trajectory that described how the predicted label semantically drifts away from
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the correct one while the image is progressively masked. Examples of such tra-
jectories are visualized in Fig. 3: on the X-axis is the semantic distance from the
correct label, and on the Y-axis the percentage of masked pixels: note that the
area under this trajectory is in the range [0, 1].

A good explanatory heatmap should highlight first the most relevant pixels
for the correct classification; therefore masking pixels in this order should cause a
sudden drop in the semantic similarity between the new predicted label and the
original one. Consequently, this should yield a relatively horizontal trajectory
and consequently a small resulting Area Under Curve (AUC).

Conversely, a bad explanation would highlight non-relevant pixels - producing
a trajectory with more vertical segments and a bigger AUC. Thanks to the wup
distance we are able to discriminate errors with different semantic distance from
the correct label: tabby cat - Siamese cat from tabby cat - bus.

Fig. 3. Example of semantic trajectories, computed for the same image using different
XAI techniques

For this experiment we considered all images in the ImageNet label tabby
cat, linked to the homonym synset in WordNet (∼1000 images). For each image
and XAI algorithm we produced an explanation heatmap. We then proceeded to
compute each trajectory and determine its AUC. For each XAI method we then
aggregated all AUCs (for all the images in the considered synset) and computed
their distribution of the AUCs: the best explanation methods should have a
mean close to 0, equivalent to a high and positive skewness (since the data range
is [0, 1]). The results in Table 1 confirm what has been described in the previous
sections: the model-aware methods are better at capturing important pixels for
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the classification of the model than model agnostic techniques, with the mean
of the AUC curves’ distribution closer to 0. LRP is performing particularly well,
followed by Vanilla Gradient.

Table 1. Skewness of the distribution of AUCs for each XAI technique

XAI method Vanilla gradient GradCAM LIME Guided backprop RISE LRP

Skewness 0.909 0.872 0.590 0.887 0.882 1.032

An important observation is that each trajectory depends on the size of the
object represented in the image, but for this analysis we aggregate the trajec-
tories for a whole ImageNet-WordNet synset, thus comparing distributions of a
thousand trajectories, over the same images, for each XAI algorithm.

We remark that this experiment does not involve any additional ground truth
(such as the segmentation), as we rely on WordNet’s structure. We are therefore
able to connect a performance-based analysis with a semantics-based approach
using benchmark data and without a human in the loop.

6 Discussion

For the heatmap-based metrics we focused on a single image because our goal
was to show how explanations visually differ when changing XAI algorithm or
label - the scalability limit in this case is caused by the need for ground truth seg-
mentation data. For the ontology-based metric we analyzed a synset as a whole;
this approach can be virtually extended to the whole ImageNet dataset, with the
sole concern of computational cost - since every trajectory requires classifying
multiple partially masked versions of the same image. All XAI algorithms, as
well as the pretrained DL model and all data, are publicly available following
the provided links.

There is a number of other quantitative comparisons (that we omitted for the
sake of brevity) that we performed, such as analyzing how explanations change
for different labels, or measuring how noisy or contiguous the hot regions in the
heatmaps are. We argue that these analyses are paramount in order to be able
to compare explanations heatmaps and XAI algorithms.

The experiments described in the previous sections show a clear discrepancy
between XAI techniques: in particular, it is possible to conclude that model aware
algorithms are better at discerning important regions for the model, which may
not coincide with the human perception of the input. On the contrary, model
agnostic methods return explanations which are closer to human common sense,
but the corresponding heatmaps highlight regions that correlate poorly with
the classification performance. Therefore we argue that these two families of
XAI algorithms should be adopted in different settings, according to the priority
assigned to fidelity versus human interpretability.
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7 Future Work

In the future, we will apply the metrics and comparison techniques defined in
the previous sections to new emerging XAI algorithms.

More generally, we aim at further investigate in the direction of semantic
explanation, driven by the intuition that human-understandable explanations
have to be articulated and therefore require to link the black box outputs with
some form of structured symbolic knowledge; in particular, we will keep exploit-
ing the connection between ImageNet and WordNet. For example, for each label-
synset (e.g. tabby cat) one can find all sibling nodes in WordNet that correspond
to ImageNet labels (tiger cat, Siamese cat, and so on); setting the corresponding
multi-hot output vector in a DL model and applying existing XAI algorithms
would allow to obtain a generalized explanation of the cat superclass, an ances-
tor in the WordNet hierarchy but not an existing (and therefore explainable)
class for DL models trained on ImageNet. With the same logic counterfactual
explanations can be obtained, e.g. providing an explanation of why an image
was classified as cat but specifically as a tabby cat and not a Siamese one. With
the same goal, also part-of links can be navigated in order to further enrich the
otherwise explanations provided by XAI algorithms.
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